Problem
If the length of the hypotenuse of a right-angled triangle is $a$ and the diameter of the circle inscribed in the right-angled triangle is $d$, what are the lengths of the short and long sides of the right-angled triangle? (In the figure below, $AB$ is the short side and $BC$ is the long side.)
岡山県赤磐市佐古.png)
$$ $$
$$ $$
$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
Solution
From the figure, it follows that
$$AB+BC=a+d, —–[1]$$
$$(AB+BC)^2=AB^2+BC^2+2AB\cdot BC=a^2+d^2+2ad,$$
$$AB^2+BC^2=a^2+d^2+2ad-2AB\cdot BC.$$
However, obviously $AB^2+BC^2=a^2$, so
$$d^2+2ad-2AB\cdot BC=0,$$
$$∴ 2AB\cdot BC=d^2+2ad.$$
Furthermore, it turns out that
$$(AB-BC)^2=AB^2+BC^2-2AB\cdot BC=a^2-(d^2+2ad),$$
$$∴ AB-BC=-\sqrt{a^2-2ad-d^2}, —–[2]$$
$(∵ AB<BC)$
From [1]+[2], we see that
$$2AB=a+d-\sqrt{a^2-2ad-d^2},$$
$$∴ AB=\frac{a+d-\sqrt{a^2-2ad-d^2}}{2}.$$
From [1]-[2], we have
$$2BC=a+d+\sqrt{a^2-2ad-d^2},$$
$$∴ BC=\frac{a+d+\sqrt{a^2-2ad-d^2}}{2}.$$
(Answer) $AB=\frac{a+d-\sqrt{a^2-2ad-d^2}}{2},$
$BC=\frac{a+d+\sqrt{a^2-2ad-d^2}}{2}.$
Reference
Yoshikazu Yamakawa, ed. (1997) Okayama ken no Sangaku (Sangaku in Okayama Prefecture), p.50; pp.310-311.