Hachiman Wake Shrine (1890), Sako, Akaiwa City, Okayama Prefecture (11)


Problem

If the differences between the hypotenuse $CA$ and the short side $AB$ of a right-angled triangle and between the hypotenuse $CA$ and the long side $BC$ are $a$ and $b$ respectively, what are the lengths of the short side, the long side, and the hypotenuse, and the diameter $d$ of the circle inscribed in the three sides? ?


$$ $$

$$ $$

$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$


Solution

Firstly, we know that

$$CA-AB=a, —–[1]$$

$$CA-BC=b, —–[2]$$

$$d=AB+BC-CA. —–[3]$$

Squaring both sides of [3] gives

$$d^2=AB^2+BC^2+CA^2+2AB\cdot BC-2AB\cdot CA-2BC\cdot CA.$$

Because $AB^2+BC^2=CA^2,$

$$\begin{eqnarray}&&d^2=2CA^2-2AB\cdot CA-2BC\cdot CA+2AB\cdot BC\\[5pt]&=&2CA(CA-AB)-2BC(CA-AB) =2(CA-AB)(CA-BC) \\[5pt]&=&2ab,\end{eqnarray}$$

$$∴d=\sqrt{2ab}.$$

From [1]+[2], we have

$$2CA-AB-BC=a+b,$$

$$CA+(CA-AB-BC)=a+b,$$

$$CA=a+b+(AB+BC-CA),$$

$$∴ CA=a+b+d=a+b+\sqrt{2ab},$$

($∵ d=AB+BC-CA$)

$$∴ AB=CA-a=b+\sqrt{2ab},$$

$$∴ BC=CA-b=a+\sqrt{2ab}.$$

$$ $$

$$ $$

$$ $$

$$Ans.\quad AB=b+\sqrt{2ab},$$

$$BC=a+\sqrt{2ab},$$

$$CA=a+b+\sqrt{2ab},$$

$$d=\sqrt{2ab}.$$


Reference

Yoshikazu Yamakawa, ed. (1997) Okayama ken no Sangaku (Sangaku in Okayama Prefecture), p.51; pp.308-309.


Leave a Reply

Your email address will not be published. Required fields are marked *