Hachiman Wake Shrine (1890), Sako, Akaiwa City, Okayama Prefecture (12)


Problem

 

If the diameter of the circle inscribed in the three sides of a right-angled triangle $ABC$ is $d$, and the length of the perpendicular $BD$ from the right angle $∠B$ to the hypotenuse $CA$ is known to be $a$, What are the lengths of the short side $AB$, the long side $BC$, and the hypotenuse $CA$?

 

 


 

$$ $$

 

$$ $$

 

$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$

 

$$ $$

 

$$ $$

 

$$ $$

 

$$ $$

 

$$ $$

 

$$ $$

 

$$ $$

 

$$ $$

 

$$ $$

 

$$ $$

 


 

Solution

 

The area $S$ of the right triangle $ABC$ above can be expressed in two ways. First, it follows that

 

$$S=\frac{1}{2}×AB×BC,$$

 

$$∴ 2S=AB×BC. —– [1]$$

 

Next, we see that

 

$$S=\frac{1}{2}×CA×a,$$

 

$$∴ 2S=a×CA. —– [2]$$

 

Therefore, we have

 

$$AB×BC=a×CA. —– [3]$$

 

From the figure, we see that

 

$$AB+BC=CA+d, —–[4]$$

 

$$(AB+BC)^2=(CA+d)^2,$$

 

$$AB^2+BC^2=CA^2+(2d×CA-2AB×BC+d^2),$$

 

$$∴ 2d×CA-2AB×BC+d^2=0. —–[5]$$

 

$(∵ AB^2+BC^2=CA^2.)$

 

Substituting $[3]$ into $[5]$ gives

 

$$2d×CA-2a×CA+d^2=0,$$

 

$$2a×CA-2d×CA=d^2,$$

 

$$∴ CA=\frac{d^2}{2a-2d}. —– [6]$$

 

Substituting [6] into [4], we get

 

$$AB+BC=\frac{2ad-d^2}{2a-2d}. —– [7]$$

 

When we square $AB-BC$, we get

 

$$\begin{eqnarray}&&(AB-BC)^2=AB^2+BC^2-2AB×BC\\[5pt]&=&CA^2-2a×CA\\&=&CA×(CA-2a)\\&=&\frac{d^2}{2a-2d}×\frac{d^2-4a^2+4ad}{2a-2d}\\&=&\frac{d^4+4ad^3-4a^2d^2}{(2a-2d)^2},\end{eqnarray}$$

 

$$∴ AB-BC=-\frac{\sqrt{d^4+4ad^3-4a^2×d^2 }}{2a-2d}. —– [8]$$

 

From $[7]+[8]$, it follows that

 

$$2AB=\frac{2ad-d^2-d\sqrt{d^2+4ad-4a^2}}{2a-2d},$$

 

$$∴ AB=\frac{d×(2a-d-\sqrt{d^2+4ad-4a^2})}{4a-4d}.$$

 

From [7]-[8], we have

 

$$2BC=\frac{2ad-d^2+d\sqrt{d^2+4ad-4a^2}}{2a-2d},$$

 

$$∴ BC=\frac{d×(2a-d+\sqrt{d^2+4ad-4a^2})}{4a-4d}.$$

 

$$ $$

 

$$ $$

 

$$ $$

 

$$Ans.\quad CA=\frac{d^2}{2a-2d},$$

 

$$AB=\frac{d×(2a-d-\sqrt{d^2+4ad-4a^2})}{4a-4d},$$

 

$$BC=\frac{d×(2a-d+\sqrt{d^2+4ad-4a^2})}{4a-4d}.$$

 


 

Reference

 

Yoshikazu Yamakawa, ed. (1997) Okayama ken no Sangaku (Sangaku in Okayama Prefecture), p.51; pp.307-308.


Leave a Reply

Your email address will not be published. Required fields are marked *