The Encyclopedia of Geometry (0023)


Problem

For $∠ABC$ and $∠DEF$, if the sides $AB$ and $DE$ are parallel in the same direction, and $BC$ and $EF$ are parallel in opposite direction, then

$$∠ABC+∠DEF=2∠R.$$ 


$$ $$

$$ $$

$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$


Solution

If the intersection of $DE$ and $BC$ is $G$, then $∠ABC$ and $∠BGE$ are alternate angles and $AB∥DE$.

$$∴ \ ∠ABC=∠BGE.$$

$∠BGE$ and $∠DEF$ are interior angles on the same side, and $BC∥EF$.

Therefore, the two angles form complementary angles,

$$∠BGE+∠DEF=2∠R.$$

$$∴ \ ∠ABC+∠DEF=2∠R.$$ 

$ $
$ $
$ $

Reference

Teiichiro Sasabe (1976) The Encyclopedia of Geometry (2nd edition), Seikyo-Shinsha, p.8