The Encyclopedia of Geometry (0030)


Problem

Two triangles, in which the three corresponding sides are equal respectively, are congruent.


$$ $$

$$ $$

$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$


Solution

In $△ABC$ and $△DEF$,

$$AB=DE, \quad BC=EF \quad and \quad AC=DF.$$

As shown in the figure below, place $E$ on top of $B$, $F$ on top of $C$, and $D$ on top of $D’$ (on the opposite side of $A$ from $EF$).

Then,

$$AB=D’B,$$

$$∴ \ ∠BAD’=∠BD’A.$$

$$AC=D’C,$$

$$∴ \ ∠CAD’=CD’A.$$

$$∴ \ ∠BAD’+∠CAD’=∠BD’A+CD’A.$$

That is,

$$∠BAC=∠BD’C=∠EDF,$$

$$∴ \ AB=DE, \quad AC=DF \quad and \quad ∠A=∠D.$$

$$∴ \ △ABC≡△DEF.$$

$ $
$ $
$ $

Reference

Teiichiro Sasabe (1976) The Encyclopedia of Geometry (2nd edition), Seikyo-Shinsha, pp.9-10