The Encyclopedia of Geometry (0043)


Problem

In $△ABC$, when $AC$ is larger than $AB$, $AD$ connecting any $D$ on $BC$ and $A$ is smaller than $AC$.


$$ $$

$$ $$

$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$


Solution

If $AC>AB$, then from the problem $0038$,

$$∠B>∠C.$$

Since $∠ADC$ is an exterior angle of $△ABD$,

$$∠ADC>∠B,$$

$$∴ \ ∠ADC>∠C,$$

$$∴ \ AC>AD.$$

$ $

$ $
$ $

Reference

Teiichiro Sasabe (1976) The Encyclopedia of Geometry (2nd edition), Seikyo-Shinsha, p.12