The Encyclopedia of Geometry (0045)


Problem

If we take any points $D, \ E$, and $F$ on sides $BC, \ CA$, and $AB$ of $△ABC$, we get

$$3(AD+BE+CF)<5(AB+BC+CA).$$


$$ $$

$$ $$

$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$


Solution 

If $AB$ is the maximum side of $△ABC$ and $CA$ is the minimum side, then according to the problem $0043$,

$$AD<AB, \quad BE<AB\quad and \quad CF<BC.$$

$$∴\ AD+BE+CF<2AB+BC$$

$$∴ \ 3(AD+BE+CF)<6AB+3BC. \qquad [1]$$

From the problem $0042$,

$$AB<BC+CA.$$

Therefore,

$$AB<2BC+5CA. \qquad[2]$$

From $[1]$ and $[2]$,

$$3(AD+BE+CF)+AB<6AB+3BC+2BC+5CA,$$

$$∴ \ 3(AD+BE+CF)<5(AB+BC+CA).$$

$ $

$ $
$ $

Reference

Teiichiro Sasabe (1976) The Encyclopedia of Geometry (2nd edition), Seikyo-Shinsha, p.13