The Encyclopedia of Geometry (0046)


Problem

If we take any point $O$ within $△ABC$ and draw line segments $OB$ and $OC$, we get

$$AB+AC>OB+OC, \qquad and \qquad ∠BOC>∠A.$$


$$ $$

$$ $$

$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$


Solution

If $BO$ is extended and the point where it intersects with $AC$ is $D$, then in $△ABD$,

$$AB+AD>BD,$$

$$∴ \ AB+AD>OB+OD. \qquad [1]$$

Also, in $△ODC$,

$$OD+DC>OC. \qquad [2]$$

From $[1]$ and $[2]$,

$$AB+AD+OD+DC>OB+OD+OC,$$

$$AB+(AD+DC)>OB+OC,$$

$$∴ \ AB+AC>OB+OC.$$

Also, since the exterior angle of a triangle is greater than any of its inner opposite angles, in
$△ABD$,

$$∠BDC>∠A. \qquad [3]$$

Also, in $△ODC$,

$$∠BOC>∠ODC .\qquad [4]$$

From $[3]$ and $[4]$,

$$∠BDC+∠BOC>∠A+∠ODC,$$

$$∴ \ ∠BOC>∠A. \qquad (∵ ∠BDC=∠ODC)$$

$ $

$ $
$ $

Reference

Teiichiro Sasabe (1976) The Encyclopedia of Geometry (2nd edition), Seikyo-Shinsha, p.13