The Encyclopedia of Geometry (0048)


Problem

In $△ABC$, when $BC<AC<AB$, take any point $P$ in the triangle, create line segments $AP$, $BP$, and $CP$, and let $M$ be the intersection of $BC$ and the extension of $AP$, then,

$$(1) \ AM+BC<AB+AC.$$

$$(2) \ AP+BP+CP<AB+AC.$$


$$ $$

$$ $$

$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$


Solution 

$(1)$ Since $∠AMB$ is the exterior angle of $△AMC$,

$$∠AMB>∠C.$$

However, depending on the conditions,

$$AC<AB,$$

$$∴ \ ∠C>∠B,$$

$$∴ \ ∠AMB>∠B,$$

$$∴ \ AM<AB. \qquad [1]$$

Depending on the conditions,

$$BC<AC. \qquad [2]$$

From $[1]$ and $[2]$,

$$AM+BC<AB+AC.$$

 

(2) Draw a straight line through $P$ parallel to $BC$, and let the intersections of $AB$ and $AC$ be $B’$ and $C’$, respectively.

From the proof of $(1)$,

$$AP+B’C'<AB’+AC’. \qquad [3]$$

Also, regarding $△BPB’$,

$$BP<B’P+B’B. \qquad [4]$$

Regarding $△CPC’$,

$$CP<C’P+C’C. \qquad [5]$$

From $[3]$~$[5]$,

$$AP+B’C’+BP+CP<AB’+AC’+B’P+B’B+C’P+C’C,$$

$$AP+B’C’+BP+CP<(AB’+B’B)+(AC’+C’C)+(B’P+C’P),$$

$$∴ \ AP+BP+CP<AB+AC.$$

$$(∵ \ AB’+B’B=AB, \quad AC’+C’C=AC, \quad and \qquad B’P+C’P=B’C’)$$

$ $

$ $
$ $

Reference

Teiichiro Sasabe (1976) The Encyclopedia of Geometry (2nd edition), Seikyo-Shinsha, pp.13-14