The Encyclopedia of Geometry (0049)


Problem

In the obtuse triangle $ABC$, let $∠C$ be the obtuse angle.
Suppose that
$$BD=\frac{1}{2} (AB+AC), \qquad and \qquad DE∥BC.$$
Take any point $F$ inside $△ADE$ or on $DE$, draw a straight line through $F$ and parallel to $AB$, and let $G$ be the point of intersection with $BC$.

If we take $H$ and $I$ on the side $BC$ so that $HG=GI$,

$$FH+FI>AB+AC.$$


$$ $$

$$ $$

$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$


Solution 

When $F$ is on $DE$,

$$FG=BD=\frac{1}{2} (AB+AC),$$

$$∴ \ 2FG=AB+AC.$$

Regarding $△FHI$, since $HG=GI$, from the property of the median line,

$$FH+FI>2FG,$$

$$∴ \ FH+FI>AB+AC.$$

When $F$ is inside $△ADE$,

$$FH+FI>2FG>2BD,$$

$$∴ \ FH+FI>AB+AC.$$

$ $

$ $
$ $


Reference

Teiichiro Sasabe (1976) The Encyclopedia of Geometry (2nd edition), Seikyo-Shinsha, p.14