The Encyclopedia of Geometry (0055)


Problem

In $△ABC$ where $AB>AC$, if we take $AD$ equal to $AC$ on $AB$, we have

$$∠ADC=\frac{1}{2} (∠B+∠C) \quad and\quad ∠BCD=\frac{1}{2} (∠C-∠B)$$


$$ $$

$$ $$

$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$


Solution

If $∠ADC=∠ACD$ and these angles are $α$ and the angle of $∠BCD$ is $β$, then

$$∠B=α-β \qquad and \qquad ∠C=α+β,$$

$$∴ \ \frac{1}{2} (∠B+∠C)=α,$$

$$∴ \ ∠ADC=\frac{1}{2}(∠B+∠C).$$

Similarly,

$$\frac{1}{2} (∠C-∠B)=β,$$

$$∴ \ ∠BCD=\frac{1}{2} (∠C-∠B).$$

$ $
$ $

Reference

Teiichiro Sasabe (1976) The Encyclopedia of Geometry (2nd edition), Seikyo-Shinsha, p.15