The Encyclopedia of Geometry (0058)


Problem

Let $D$ be the foot of the perpendicular drawn from the vertex $A$ to the opposite side $BC$ of $△ABC$, and let $E$ and $F$ be the midpoints of the sides $BC$ and $AB$, respectively. Then $$∠DFE=|∠B-∠C|$$


$$ $$

$$ $$

$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$


Solution

As shown in the figure, if $∠B>∠C$,

$$FB=FD,$$

$$∴ \ ∠B=∠FDB.$$

$$∠FDB=∠DFE+∠FED,$$

$$∴ \ ∠B=∠DFE+∠BEF.$$

Since $△ABC〜△FBE$,

$$∠BEF=∠C,$$

$$∴ \ ∠B=∠DFE+∠C,$$

$$∴ \ ∠DFE=∠B-∠C.$$

If $∠B<∠C$, thinking similarly, we have

$$∠DFE=∠C-∠B.$$

When $∠B=∠C$,

$△ABC$ becomes an isosceles triangle with $A$ as the vertex. Therefore, $D$ and $E$ overlap, and

$$∠DFE=∠B-∠C=0.$$

In any case,

$$∠DFE=|∠B-∠C|.$$

$ $
$ $
$ $

Reference

Teiichiro Sasabe (1976) The Encyclopedia of Geometry (2nd edition), Seikyo-Shinsha, p.15