The Encyclopedia of Geometry (0062)


Problem

The bisector $AE$ of the apex angle $∠A$ of a triangle $ABC$ lies between the median line $AM$ and the perpendicular $AD$ drawn from this apex angle to the opposite side.


$$ $$

$$ $$

$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$


Solution

Let $AB>AC$.

If we take a point $A’$ on the extension of $AM$ such that $AM=MA’$,

$$AM=A’M, \qquad MC=MB \quad and \qquad ∠AMC=∠A’ MB,$$
$$∴ \ △AMC≡△A’ MB,$$
$$∴ \ AC=A’ B \qquad and \qquad ∠CAM=∠BA’ M,$$
$$∴ \ AB>A’ B, \qquad (∵ \ AB>AC)$$
$$∴ \ ∠BA’ M>∠BAM,$$
$$∴ \ ∠CAM>∠BAM.$$

Therefore, the bisector $AE$ of $∠A$ lies between $AM$ and $AC$.

However,

$$∠B<∠C, \qquad (∵ AB>AC)$$

$$∴ \ ∠BAD>∠DAC.$$

Therefore, $AE$ is between $AD$ and $AB$.

Thus, $AE$ is between $AM$ and $AD$.

$ $
$ $
$ $

Reference

Teiichiro Sasabe (1976) The Encyclopedia of Geometry (2nd edition), Seikyo-Shinsha, p.16