The Encyclopedia of Geometry (0065)


Problem

Suppose that any straight line passes through the vertex $A$ of a triangle $ABC$. The feet $D$ and $E$ of the perpendicular lines drawn from $B$ and $C$ to the above line are equidistant from the midpoint $M$ of the side $BC$.


$$ $$

$$ $$

$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$


Solution

Let $F$ be the foot of the perpendicular line drawn from $M$ to $DE$. Then,

$$BD∥MF∥CE.$$

Since $M$ is the midpoint of $BC$,

$$DF=FE.$$

Therefore, $M$ lies on the perpendicular bisector of $DE$ and is the vertex of the isosceles triangle $MDE$.

$$∴ \ MD=ME.$$

$ $
$ $
$ $

Reference

Teiichiro Sasabe (1976) The Encyclopedia of Geometry (2nd edition), Seikyo-Shinsha, p.17