The Encyclopedia of Geometry (0066)


Problem

In a triangle $ABC$, if $AB>AC$, and we take any point $P$ on the perpendicular $AD$ drawn from the vertex $A$ to the opposite side $BC$, then we have

$$PB-PC>AB-AC.$$


$$ $$

$$ $$

$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$


Solution

Since $AB>AC$,

$$BD>CD.$$

Therefore, if we take a point $C’$ on $BD$ such that $CD=C’D$, $AC=AC’$ and $PC=PC’$.

 If the intersection of $PB$ and $AC’$ is $O$, then

$$OA+OB>AB \qquad and \qquad OC’+OP>PC,$$

$$∴ \ OA+OB+OC’+OP>AB+PC,$$

$$∴ \ (OA+OC’)+(OB+OP)>AB+PC,$$

$$∴ \ AC’+PB>AB+PC,$$

$$∴ \ AC+PB>AB+PC,$$

$$∴ \ PB-PC>AB-AC.$$

$ $
$ $
$ $

Reference

Teiichiro Sasabe (1976) The Encyclopedia of Geometry (2nd edition), Seikyo-Shinsha, p.17