The Encyclopedia of Geometry (0073)


Problem

If $D$ is the point where the bisector of $∠A$ intersects the side $BC$ in the triangle $ABC$, then

$$AB>BD \qquad and \qquad AC>CD.$$


$$ $$

$$ $$

$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$


Solution

Regarding the triangle $ABD$,

$$∠ADB=∠CAD+∠C,$$

$$∴ \ ∠ADB=∠BAD+∠C, \quad (∵ \ ∠BAD=∠CAD)$$

$$∴ \ ∠ADB>∠BAD,$$

$$∴ \ AB>BD.$$

Similarly, for the triangle $ACD$,

$$∠ADC=∠BAD+∠B,$$

$$∴ \ ∠ADC=∠CAD+∠B,$$

$$∴ \ ∠ADC>∠CAD,$$

$$∴\ AC>CD.$$

$ $
$ $
$ $

Reference

Teiichiro Sasabe (1976) The Encyclopedia of Geometry (2nd edition), Seikyo-Shinsha, p.18