Problem
If the medians $BE$ and $CF$ of $△ABC$ are extended so that $BE=EG$ and $CF=FH$, then $G, \ A$ and $H$ are collinear.
$$ $$
$$ $$
$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
Solution

For $△AFH$ and $△BFC$,
$$∠AFH=∠BFC, \qquad AF=BF, \qquad and \qquad FH=FC,$$
$$∴ \ △AFH≡△BFC,$$
$$∴ \ ∠AHF=∠BCF,$$
$$∴ HA∥BC.$$
For $△AEG$ and $△CEB$,
$$∠AEG=∠CEB, \qquad AE=CE, \qquad and \qquad EG=EB,$$
$$∴ \ △AEG≡△CEB,$$
$$∴ \ ∠AGE=∠CBE,$$
$$∴ \ GA∥BC.$$
$HA$ and $GA$ share the point $A$ and are both parallel to $BC$.
Thus, $G, \ A$ and $H$ are collinear.
$ $
$ $
$ $
Reference Teiichiro Sasabe (1976) The Encyclopedia of Geometry (2nd edition), Seikyo-Shinsha, p.26.