The Encyclopedia of Geometry (0111)


Problem

Let $D$ be the midpoint of the side $AB$ of $△ABC$, and the point $E$ be on the side $AC$ so that $AE∶EC=2∶1$.

Moreover, let $O$ be the intersection of $CD$ and $BE$. Then,

$$BE∶OE=4∶1.$$


$$ $$
$$ $$

$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$

$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$

Solution

If the midpoint of $AE$ is $F$, then

$$AD=DB \qquad and \qquad AF=FE,$$

$$∴ \ DF∥BC.$$

$$△ABE \sim △ADF \qquad and \qquad AB∶AD=2∶1,$$

$$∴ \ BE∶DF=2∶1. \qquad [1]$$

$$△DFC \sim △OEC \qquad and \qquad FC∶EC=2∶1,$$

$$∴ \ DF∶OE=2∶1. \qquad [2]$$

From $[1]$ and $[2]$,

$$BE:DF:OE=2:1:\frac{1}{2},$$

$$∴ \ BE∶OE=4∶1.$$

$ $
$ $
$ $

Reference Teiichiro Sasabe (1976) The Encyclopedia of Geometry (2nd edition), Seikyo-Shinsha, p.26.