Problem
In $△ABC$, let $AB>AC$, and take any point $P$ on the median line $AD$. Then,
$$AB-AC>PB-PC.$$
$$ $$
$$ $$
$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
Solution

If we take a point $E$ on $AB$ so that $AC=AE$,
$$AB-AC=AB-AE=EB.$$
Since $AB>AC$ and $D$ is the midpoint of $BC$,
$$∠BAD<∠CAD,$$
$$∴ \ PE<PC.$$
For $△PEB$,
$$PE+EB>PB,$$
$$∴ \ EB>PB-PE>PB-PC,$$
$$∴ \ AB-AC>PB-PC.$$
$ $
$ $
$ $
Reference Teiichiro Sasabe (1976) The Encyclopedia of Geometry (2nd edition), Seikyo-Shinsha, p.27.