Katayama-hiko Shrine (1873), Osafune-cho, Setouchi City, Okayama Prefecture (09)


Problem

There are two large circles and two small circles inside a rhombus as shown in the figure.

If the longer diagonal of the rhombus is $85 \ inches$ and the shorter is $42 \ inches$, find the diameters of the large and small circles.


$$ $$

$$ $$

$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$


Solution

Let the diameters of the larger and smaller circles be $D$ and $d$, respectively.
If the longer diagonal of the rhombus is $a$ and the shorter is $b$, the length of one side $AB$ of the rhombus is as follows:
$$AB=\sqrt{\left(\dfrac{a}{2}\right)^2+ \left(\dfrac{b}{2}\right)^2}=\frac{\sqrt{a^2+b^2}}{2}.$$
Then,
$$AB∶AE=OB∶OF,$$
$$\frac{\sqrt{a^2+b^2}}{2}∶\frac{b}{2}=\left(\dfrac{a}{2}-\dfrac{D}{2}\right)∶\frac{D}{2},$$
$$∴ \ D=\frac{ab}{b+\sqrt{a^2+b^2}}. \qquad [1]$$
Next,
$$PE=\sqrt{\left(\dfrac{D+d}{2}\right)^2-\left(\dfrac{D}{2}\right)^2}=\frac{\sqrt{2Dd+d^2}}{2}. \qquad [2]$$
Also,
$$AB∶BE=AP∶PG,$$
$$\frac{\sqrt{a^2+b^2}}{2}∶\frac{a}{2}=AP∶\frac{d}{2},$$
$$∴ \ AP=\frac{d \sqrt{a^2+b^2}}{2a}. \qquad [3]$$
Since $[2]+[3]=AE$,
$$\frac{\sqrt{2Dd+d^2}}{2}+\frac{d \sqrt{a^2+b^2}}{2a}=\frac{b}{2},$$
$$a \sqrt{2Dd+d^2}=ab-d \sqrt{a^2+b^2}. \qquad [4]$$
Squaring both sides of $[4]$ and rearranging for $d$,
$$a^2 (2Dd+d^2 )=a^2 b^2-2abd \sqrt{a^2+b^2}+d^2 (a^2+b^2 ),$$
$$b^2 d^2-2(ab \sqrt{a^2+b^2}+a^2 D) d+a^2 b^2=0,$$
$$∴ \ d=\frac{ab \sqrt{a^2+b^2}+a^2 D \pm \sqrt{(ab \sqrt{a^2+b^2}+a^2 D)^2-a^2 b^4}}{b^2},$$
$$∴ d=\frac{ab \sqrt{a^2+b^2}+a^2 D \pm a \sqrt{a^2 b^2+2abD \sqrt{a^2+b^2}+a^2 D^2}}{b^2}. \qquad [5]$$
Substituting $a=85$ and $b=42$ into $[1]$ and $[5]$,
$$D≒26.0945, \qquad and \qquad d≒585.1653 \quad or \quad 12.3469.$$
However, $d≒585.1653$ is too large. Thus,
$$d≒12.3469.$$
 
$$\begin{eqnarray} (Answer) \quad large \ circle: \quad approx. 26.0945 \ inches \\ and \qquad small \ circle: \quad approx. 12.3469 \ inches. \end{eqnarray}$$
 

Commentary
The questioner’s answer to this problem is as follows:
$$D=21.559 \qquad and \qquad d=19.854.$$
These are different from the answers found above.
This problem is a quotation from Guow-Sanpow (1699) by Kenryu Miyake, and both the problem text and the numerical values ​​are the same as in the original.
However, the diagram was drawn incorrectly when quoting, and the correct diagram in the original source is as follows:
Then, let us calculate the diameters of the two circles on the left and right and the two on the top and bottom.
$$ $$
$$ $$
$$ $$
Solution

Let the diameters of the circles on the left and right and on the top and bottom be $D$ and $d$, respectively.

If the longer diagonal of the rhombus is $a$ and the shorter is $b$, then the length of one side $AB$ of the rhombus is as follows:

$$AB=\sqrt{\left(\dfrac{a}{2}\right)^2+ \left(\dfrac{b}{2}\right)^2}=\frac{\sqrt{a^2+b^2}}{2}.$$

Then,

$$AB∶BE=AP∶PG,$$

$$\frac{\sqrt{a^2+b^2}}{2}∶\frac{a}{2}=\frac{b-d}{2}∶\frac{d}{2},$$

$$\sqrt{a^2+b^2}:a=(b-d):d,$$

$$d \sqrt{a^2+b^2}=ab-ad,$$

$$d (a+\sqrt{a^2+b^2})=ab,$$

$$∴ \ d=\frac{ab}{a+\sqrt{a^2+b^2}}. \qquad [a]$$

Then,

$$EO=\sqrt{\left(\dfrac{D+d}{2}\right)^2-\left(\frac{d}{2}\right)^2}=\frac{\sqrt{D^2+2Dd}}{2}. \qquad [b]$$

Also,

$$AB∶AE=OB∶OF,$$

$$\frac{\sqrt{a^2+b^2}}{2}∶\frac{b}{2}=OB∶\frac{D}{2},$$

$$∴ \ OB=\frac{D \sqrt{a^2+b^2}}{2b}. \qquad [c]$$

Since $[b]+[c]=EB$,

$$\frac{\sqrt{D^2+2Dd}}{2}+\frac{D \sqrt{a^2+b^2}}{2b}=\frac{a}{2},$$

$$b \sqrt{D^2+2Dd}=ab-D \sqrt{a^2+b^2}. \qquad [d]$$

Squaring both sides of $[d]$ and rearranging for $D$,

$$b^2 (D^2+2Dd)=a^2 b^2-2abD \sqrt{a^2+b^2}+D^2 (a^2+b^2),$$

$$a^2 D^2-2(ab \sqrt{a^2+b^2}+b^2 d)D+a^2 b^2=0,$$

$$∴ \ D=\frac{ab \sqrt{a^2+b^2}+b^2 d \pm \sqrt{(ab \sqrt{a^2+b^2}+b^2 d)^2-a^4 b^2}}{a^2},$$

$$∴ \ D=\frac{ab \sqrt{a^2+b^2}+b^2 d \pm b \sqrt{a^2 b^2+2abd \sqrt{a^2+b^2}+b^2 d^2}}{a^2}. \qquad [e]$$

Substituting $a=85$ and $b=42$ into $[a]$ and $[e]$,

$$d≒19.8543, \qquad and \qquad D≒81.8340 \quad or \quad 21.5558.$$

However, $D≒81.8340$ is too large. Thus,

$$D≒21.5558.$$

For $d$, it matches the answer of the Sangaku, and for $D$, it matches the answer up to the second decimal place.

 


Reference

Hidetoshi, Fukagawa and Tony Rothman (2008) Sacred Mathematics: Japanese Temple Geometry, p.147; pp.164-165. Princeton University Press.

Yoshikazu Yamakawa, ed. (1997) Okayama ken no Sangaku (Sangaku in Okayama Prefecture), p.40; pp.350-352.