Problem
There are two large circles and two small circles inside a rhombus as shown in the figure.
If the longer diagonal of the rhombus is $85 \ inches$ and the shorter is $42 \ inches$, find the diameters of the large and small circles.
$$ $$
$$ $$
$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
Solution
岡山県瀬戸内市.png)
Commentary
岡山県瀬戸内市.png)
Solution
Let the diameters of the circles on the left and right and on the top and bottom be $D$ and $d$, respectively.
If the longer diagonal of the rhombus is $a$ and the shorter is $b$, then the length of one side $AB$ of the rhombus is as follows:
$$AB=\sqrt{\left(\dfrac{a}{2}\right)^2+ \left(\dfrac{b}{2}\right)^2}=\frac{\sqrt{a^2+b^2}}{2}.$$
Then,
$$AB∶BE=AP∶PG,$$
$$\frac{\sqrt{a^2+b^2}}{2}∶\frac{a}{2}=\frac{b-d}{2}∶\frac{d}{2},$$
$$\sqrt{a^2+b^2}:a=(b-d):d,$$
$$d \sqrt{a^2+b^2}=ab-ad,$$
$$d (a+\sqrt{a^2+b^2})=ab,$$
$$∴ \ d=\frac{ab}{a+\sqrt{a^2+b^2}}. \qquad [a]$$
Then,
$$EO=\sqrt{\left(\dfrac{D+d}{2}\right)^2-\left(\frac{d}{2}\right)^2}=\frac{\sqrt{D^2+2Dd}}{2}. \qquad [b]$$
Also,
$$AB∶AE=OB∶OF,$$
$$\frac{\sqrt{a^2+b^2}}{2}∶\frac{b}{2}=OB∶\frac{D}{2},$$
$$∴ \ OB=\frac{D \sqrt{a^2+b^2}}{2b}. \qquad [c]$$
Since $[b]+[c]=EB$,
$$\frac{\sqrt{D^2+2Dd}}{2}+\frac{D \sqrt{a^2+b^2}}{2b}=\frac{a}{2},$$
$$b \sqrt{D^2+2Dd}=ab-D \sqrt{a^2+b^2}. \qquad [d]$$
Squaring both sides of $[d]$ and rearranging for $D$,
$$b^2 (D^2+2Dd)=a^2 b^2-2abD \sqrt{a^2+b^2}+D^2 (a^2+b^2),$$
$$a^2 D^2-2(ab \sqrt{a^2+b^2}+b^2 d)D+a^2 b^2=0,$$
$$∴ \ D=\frac{ab \sqrt{a^2+b^2}+b^2 d \pm \sqrt{(ab \sqrt{a^2+b^2}+b^2 d)^2-a^4 b^2}}{a^2},$$
$$∴ \ D=\frac{ab \sqrt{a^2+b^2}+b^2 d \pm b \sqrt{a^2 b^2+2abd \sqrt{a^2+b^2}+b^2 d^2}}{a^2}. \qquad [e]$$
Substituting $a=85$ and $b=42$ into $[a]$ and $[e]$,
$$d≒19.8543, \qquad and \qquad D≒81.8340 \quad or \quad 21.5558.$$
However, $D≒81.8340$ is too large. Thus,
$$D≒21.5558.$$
For $d$, it matches the answer of the Sangaku, and for $D$, it matches the answer up to the second decimal place.
Reference
Hidetoshi, Fukagawa and Tony Rothman (2008) Sacred Mathematics: Japanese Temple Geometry, p.147; pp.164-165. Princeton University Press.
Yoshikazu Yamakawa, ed. (1997) Okayama ken no Sangaku (Sangaku in Okayama Prefecture), p.40; pp.350-352.