The Encyclopedia of Geometry (0135)


Problem

Construct squares $ABDE$ and $ACFG$ with the sides $AB$ and $AC$ of a right triangle $ABC$ with $∠B=∠R$, and let $H$ be the intersection point between the extension of $BA$ and $EG$. Then,

$$BC=2AH.$$  


$$ $$
$$ $$

$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$

$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$

Solution

Extend $EA$ and take a point $K$ such that $AB=AK$. Then,

$$AC=AG \qquad and \qquad ∠CAB=∠GAK,$$

$$∴ \ △ABC≡△AKG,$$

$$∴ \ ∠AKG=∠ABC=∠R.$$

For $△GEK$, $A$ is the midpoint of $EK$, and since $AH∥KG$,

$$KG=2AH.$$

Moreover, since $△ABC≡△AKG$,

$$KG=BC,$$

$$∴ \ BC=2AH.$$

$ $

$ $
$ $

Reference Teiichiro Sasabe (1976) The Encyclopedia of Geometry (2nd edition), Seikyo-Shinsha, p.31.