The Encyclopedia of Geometry (0140)


Problem

The medians drawn from both ends of the base of an isosceles triangle to the opposite sides are equal.


$$ $$
$$ $$

$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$

$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$

Solution
$△DBC$ and $△ECB$ share the side $BC \ (=CB)$,
$$DB=EC \qquad (∵ \ AB=AC, \quad DB=\frac{1}{2} AB \quad and \quad EC=\frac{1}{2} AC)$$
$$and \qquad ∠DBC=∠ECB \qquad (∵ \ ∠B=∠C),$$
$$∴ \ △DBC≡△ECB,$$
$$∴ \ CD=BE.$$

$ $

$ $
$ $

Reference Teiichiro Sasabe (1976) The Encyclopedia of Geometry (2nd edition), Seikyo-Shinsha, p.32.