The Encyclopedia of Geometry (0144)


Problem

The two perpendicular lines drawn from the vertex of an isosceles triangle to the bisectors of the base angles are equal in length.


$$ $$
$$ $$

$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$

$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$

Solution

Let $D$ and $E$ be the feet of the perpendicular lines drawn from $A$ to the bisectors of $∠B$ and $∠C$, respectively.

For $△ABD and $△ACE$,

$$AB=AC, \qquad ∠ABD=∠ACE \qquad and \qquad ∠BDA=∠CEA=∠R.$$

Therefore, from the problem $0031$,

$$△ABD≡△ACE,$$

$$∴ \ AD=AE.$$

$ $

$ $
$ $

Reference Teiichiro Sasabe (1976) The Encyclopedia of Geometry (2nd edition), Seikyo-Shinsha, p.33.