The Encyclopedia of Geometry (0148)


Problem

Extend the side $AB$ of an isosceles triangle $ABC$ with $A$ as the vertex, take a point $D$ such that $AB=BD$, and let $E$ be the midpoint of $AB$, then

$$CD=2CE.$$


$$ $$
$$ $$

$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$

$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$

Solution

Let the midpoint of the side $AC$ be F.

Then, since $△ABC$ is an isosceles triangle,

$$CE=FB.$$

Since $△ACD$ and $△AFB$ share $∠A$,

$$AD∶AB=2∶1 \qquad and \qquad AC∶AF=2∶1,$$

$$∴ \ △ACD∼△AFB,$$

$$∴ \ CD∶FB=2:1,$$

$$∴ \ CD=2FB,$$

$$∴ \ CD=2CE.$$

$ $

$ $
$ $

Reference Teiichiro Sasabe (1976) The Encyclopedia of Geometry (2nd edition), Seikyo-Shinsha, p.33.