Katayama-hiko Shrine (1873), Osafune-cho, Setouchi City, Okayama Prefecture (15)


Problem

A circle is inscribed in an isosceles triangle with two equal sides of $10 \ inches$ and a base of $12 \ inches$.
What is the diameter of the inscribed circle?


$$ $$

$$ $$

$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$


Solution

Let the diameter of the inscribed circle be $d$, the length of the base be $a$, and those of the other two sides be $b=c$.
If we draw a perpendicular line $h$ from the vertex of this triangle to the base,
$$h^2=b^2-\left( \dfrac{a}{2} \right)^2,$$
$$∴ \ h=\sqrt{b^2-\left( \dfrac{a}{2} \right)^2 }=\sqrt{10^2-6^2}=8.$$
If the area of ​​this isosceles triangle is $S$, then
$$S=\frac{1}{2}×a×h=\frac{ah}{2}. \qquad [1]$$
Also, by the Heron’s formula,
$$S=\frac{1}{2}×(a+b+c)×\frac{d}{2}=\frac{d(a+b+c)}{4}. \qquad [2]$$
From $[1]$ and $[2]$,
$$\frac{ah}{2}=\frac{d(a+b+c)}{4},$$
$$∴ \ d=\frac{2ah}{a+b+c}. \qquad [3]$$
Substituting $a=12, \ b=c=10$, and $h=8$ into $[3]$, we get
$$d=\frac{2×12×8}{12+10+10}=6.$$
 
$$(Answer) \qquad 6 \ inches.$$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$

About the “Jutsu” of This Problem

The “jutsu” (general solution) to this problem states:

“[To find the diameter of the inscribed circle] using the Pythagorean theorem, find the length of the perpendicular line from the vertex to the base. Moreover, multiply this by $12 inches$ (the length of the base), double it, and divide by the sum of the three sides.”

If we express this as a symbolic equation using $a, \ b, \ c, \ h$, and $d$ from the problem above, we get
$$d=\frac{h×a×2}{a+b+c}.$$
This is consistent with $[3]$.
$$ $$
$$ $$ 
$$ $$
$$ $$
$$ $$

Reference

Yoshikazu Yamakawa, ed. (1997) Okayama ken no Sangaku (Sangaku in Okayama Prefecture), p.41; p.343.