The Encyclopedia of Geometry (0156)


Problem

Let $DE$ and $DF$ be the perpendicular lines drawn from any point $D$ on the hypotenuse $BC$ of a right isosceles triangle $ABC$ to the sides $AB$ and $AC$, respectively, and let $M$ be the midpoint of BC.

Then $△EMF$ is also an isosceles right triangle.


$$ $$
$$ $$

$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$

$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$

Solution
 

$$AF=ED \qquad and \qquad ED=BE,$$

$$∴   AF=BE. \qquad [1]$$

Furthermore,

$$AM=BM \qquad and \qquad ∠FAM=∠EBM \ (=45°). \qquad [2]$$

From $[1]$ and $[2]$,

$$∴ \ △AFM≡△BEM. \qquad [3]$$

From $[3]$,

$$∠FMA=∠EMB,$$

$$∴ \ ∠EMF=∠AMB-∠EMB+∠FMA=90°. \qquad [4]$$

From $[3]$,

$$MF=ME. \qquad [5]$$

From $[4]$ and $[5]$, $△EMF$ is a right-angled isosceles triangle.

$ $

$ $
$ $

Reference Teiichiro Sasabe (1976) The Encyclopedia of Geometry (2nd edition), Seikyo-Shinsha, p.35.