The Encyclopedia of Geometry (0165)


Problem

Take a point $P$ in an equilateral triangle $ABC$.

Let $D, \ E$ and $F$ be the feet of perpendicular lines drawn from $P$ to sides $BC, \ AB$ and $CA$, respectively.

When $P$ is on the line segment joining the midpoints of $AB$ and $AC$, prove that $PD=PE+PF$.


$$ $$
$$ $$

$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$

$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$

Solution

From the previous problem $0164$,

$$PD+PE+PF=AH,$$

$$∴ \ AH-PD=PE+PF.$$

However, since $PD=LH$,

$$AH-LH=PE+PF,$$

$$∴ \ AL=PE+PF.$$

Since $△ANL∼△ACH$ and $AN∶AC=1∶2$,

$$AL:AH=1:2,$$

$$∴ \ AL =LH,$$

$$∴ \ PD=AL,$$

$$∴ PD=PE+PF.$$

$ $

$ $
$ $

Reference Teiichiro Sasabe (1976) The Encyclopedia of Geometry (2nd edition), Seikyo-Shinsha, pp.37-38.