The Encyclopedia of Geometry (0170)


Problem

If $D$ and $E$ are the points that trisect the side $BC$ of triangle $ABC$, then

$$AB+AC>AD+AE.$$


$$ $$
$$ $$

$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$

$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$

Solution

If the midpoint of $BC$ is $M$, and $AM$ is extended to the point $A’$ such that $AM=MA’$, then

$$AC=BA’ \qquad and \qquad AE=DA’,$$

$$∴ \ AB+AC=AB+BA’ \qquad and \qquad AD+AE=AD+DA’.$$

However, from the problem $0046$,

$$AB+BA’>AD+DA’,$$

$$∴ \ AB+AC>AD+AE.$$

$ $

$ $
$ $

Reference Teiichiro Sasabe (1976) The Encyclopedia of Geometry (2nd edition), Seikyo-Shinsha, p.39.