Problem
In a triangle $ABC$, suppose $AC>AB$.
Let $D$ be a point on $CA$ such that $CD=AB$, $E$ be the midpoint of $AD$, $F$ be the midpoint of $BC$, and $G$ be the point where the extension of $FE$ intersects with the extension of $BA$, then
$$AE=AG.$$
$$ $$
$$ $$
$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
Solution

If the midpoint of $BD$ is $H$, then
$$AB∥EH \qquad and \qquad AB:EH=2:1.$$
Furthermore,
$$CD∥FH \qquad and \qquad CD:FH=2:1.$$
Since $CD=AB$,
$$EH=FH.$$
Therefore, since $△HEF$ is an isosceles triangle with $H$ as a vertex,
$$∠HEF=∠HFE.$$
Since $GB∥EH$,
$$∠AGE=∠HEF.$$
Since $AC∥HF$,
$$∠AEG=∠HFE,$$
$$∴ \ ∠AGE=∠AEG. \qquad (∵ \ ∠HEF=∠HFE)$$
Therefore, since $△AGE$ is an isosceles triangle with $A$ as a vertex,
$$AG=AE.$$
$ $
$ $
$ $
Reference Teiichiro Sasabe (1976) The Encyclopedia of Geometry (2nd edition), Seikyo-Shinsha, p.40.