The Encyclopedia of Geometry (0180)


Problem

The perimeter of a quadrilateral is greater than the sum of its diagonals but less than twice the sum.


$$ $$
$$ $$

$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$

$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$

Solution

For $△ABC$ and $△ACD$,

$$AC<AB+BC,$$

$$AC<CD+DA,$$

$$BD<BC+CD,$$

$$BD<AB+DA,$$

$$∴ \ 2(AC+BD)<2(AB+BC+CD+DA),$$

$$∴ AC+BD<AB+BC+CD+DA \qquad [1]$$

If the intersection of both diagonals is $O$,

$$AB<AO+BO,$$

$$BC<BO+CO,$$

$$CD<CO+DO,$$

$$DA<DO+AO,$$

$$∴ \ AB+BC+CD+DA<2(AO+BO+CO+DO),$$

$$∴ \ AB+BC+CD+DA<2(AC+BD). \qquad [2]$$

From $[1]$ and $[2]$,

$$AC+BD<AB+BC+CD+DA<2(AC+BD).$$

$ $
$ $
$ $

Reference Teiichiro Sasabe (1976) The Encyclopedia of Geometry (2nd edition), Seikyo-Shinsha, p.41.