The Encyclopedia of Geometry (0183)


Problem

If the longest side of a quadrilateral $ABCD$ is $AD$ and the shortest side is $BC$, then $∠BCD$ is greater than $∠BAD$ and $∠ABC$ is greater than $∠ADC$:

$$∠BCD>∠BAD \qquad and \qquad ∠ABC>∠ADC.$$


$$ $$
$$ $$

$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$

$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$

Solution

Since $AD$ ​​is the largest side,

$$AD>CD,$$

$$∴ \ ∠DCA>∠DAC. \qquad [1]$$

Since $BC$ is the smallest side,

$$AB>BC,$$

$$∴ \ ∠BCA>∠BAC. \qquad [2]$$

From $[1]$ and $[2]$,

$$∠DCA+∠BCA>∠DAC+∠BAC,$$

$$∴ \ ∠BCD>∠BAD.$$

Similarly,

$$AD>AB,$$

$$∴ \ ∠ABD>∠ADB. \qquad [3]$$

$$CD>BC,$$

$$∴ \ ∠CBD>∠CDB. \qquad [4]$$

From $[3]$ and $[4]$,

$$∠ABD+∠CBD>∠ADB+∠CDB,$$

$$∴ \ ∠ABC>∠ADC.$$

$ $
$ $
$ $

Reference Teiichiro Sasabe (1976) The Encyclopedia of Geometry (2nd edition), Seikyo-Shinsha, p.42.