The Encyclopedia of Geometry (0190)


Problem
The length of the line segment connecting the midpoints $P$ and $Q$ of the opposing sides $AB$ and $CD$ of a quadrilateral $ABCD$ is not greater than half the sum of the lengths of the other two sides $BC$ and $DA$.
If this line segment $PQ$ is equal to the sum of the lengths of $BC$ and $DA$, then the quadrilateral is a trapezoid.

$$ $$
$$ $$

$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$

$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$

Solution

Let $M$ be the midpoint of the diagonal $BD$.

Then, $△CDB$ and $△QDM$ share $∠CDB \ (=∠QDM)$,

$$CD∶QD=DB∶DM=2∶1,$$

$$∴ \ △CDB∼△QDM,$$

$$∴ \ BC∶MQ=2∶1,$$

$$∴ \ MQ=\frac{1}{2} BC. \qquad [1]$$

$△ABD$ and $△PBM$ share $∠ABD \ (=∠PBM)$,

$$AB∶PB=BD∶BM=2∶1,$$

$$∴ \ △ABD∼△PBM,$$

$$∴ \ DA∶MP=2∶1,$$

$$∴ \ MP=\frac{1}{2} DA. \qquad [2]$$

For $△MPQ$,

$$PQ<MP+MQ,$$

$$∴ \ PQ<\frac{1}{2} BC+\frac{1}{2} DA,$$

$$∴ \ PQ<\frac{1}{2} (BC+DA).$$

When $PQ=MP+MQ$,

$P, \ Q$ and $M$ are aligned in a straight line.

Then, since $BC∥AD$, the quadrilateral $ABCD$ is a trapezoid.

Thus,

$$PQ≦\frac{1}{2} (BC+DA).$$

$ $
$ $
$ $

Reference Teiichiro Sasabe (1976) The Encyclopedia of Geometry (2nd edition), Seikyo-Shinsha, p.43.