The Encyclopedia of Geometry (0008)


Problem

The opposite angles are equal. That is, when two straight lines $AB$ and $CD$ intersect at point $O$,

$∠AOC = ∠BOD$     and     $∠AOD = ∠BOC$


$$ $$

$$ $$

$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$


Solution

Since $COD$ is a straight line,

$$∠AOC+∠AOD = 2∠R.$$

Since $AOB$ is also a straight line,

$$∠AOD+∠BOD = 2∠R,$$

$$∴ \ AOC+∠AOD = ∠AOD+∠BOD.$$

$$∴ \ ∠AOC = ∠BOD.$$

Similarly,

$$∠AOD = ∠BOC.$$

$ $
$ $
$ $

Reference

Teiichiro Sasabe (1976) The Encyclopedia of Geometry (2nd edition), Seikyo-Shinsha, p.5