The Encyclopedia of Geometry (0009)


Problem

If there are two angles $∠AOB$ and $∠COD$ with the same vertex, and $AO⊥CO$ and $BO⊥DO$, then

$∠AOB=∠COD \quad$ or $\quad ∠AOB+∠COD=2∠R$


$$ $$

$$ $$

$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$


Solution

In figure (1),

$$∠AOC=∠BOD (=∠R).$$

Therefore, if we subtract $∠BOC$ from both sides, we get

$$∠AOB=∠COD.$$

 

In figure (2),

$$∠AOB+∠BOD+∠COD+∠AOC=4∠R.$$

Since $∠AOC$ and $∠BOD$ are right angles respectively,

$$∠AOB+∠COD=2∠R.$$

$ $
$ $
$ $


Reference

Teiichiro Sasabe (1976) The Encyclopedia of Geometry (2nd edition), Seikyo-Shinsha, p.5