The Encyclopedia of Geometry (0011)


Problem

When the tangent angles $∠AOC$ and $∠BOC$ are complementary angles to each other, let the bisectors of $∠AOC$ and $∠BOC$ be $OD$ and $OE$ respectively. Then, 

$$OD⊥OE.$$


$$ $$

$$ $$

$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$


Solution

The sum of the tangent angles $∠AOC$ and $∠BOC$ is two right angles, so the sum of the angles that bisect each of these is a right angle. That is,

$$∠DOC+∠COE=∠R.$$

$$∴ \ OD⊥OE.$$

$ $
$ $
$ $

Reference

Teiichiro Sasabe (1976) The Encyclopedia of Geometry (2nd edition), Seikyo-Shinsha, p.6