The Encyclopedia of Geometry (0024)


Problem

When a straight line $EF$ cuts across parallel lines $AB$ and $CD$, the bisectors of the alternate angles and the corresponding angles are parallel.


$$ $$

$$ $$

$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$


Solution

(1) In the figure below, $AB∥CD$, and $∠AEF$ and $∠EFD$ form the alternate angles.

Thus,

$$∠AEF=∠EFD,$$

$$∴ \ \frac{1}{2}∠AEF=\frac{1}{2}∠EFD,$$

$$∴ \ ∠GEF=∠EFH,$$

$$∴ \ EG∥FH.$$

(2) In the figure below, $AB∥CD$, and $∠GEB$ and $∠GFD$ form the corresponding angles.

Therefore,

$$∠GEB=∠GFD,$$

$$∴ \ \frac{1}{2}∠GEB=\frac{1}{2}∠GFD,$$

$$∴ \ ∠GEN=∠GFM,$$

$$∴ \ EN∥FM.$$

$ $
$ $
$ $

Reference

Teiichiro Sasabe (1976) The Encyclopedia of Geometry (2nd edition), Seikyo-Shinsha, p.8