The Encyclopedia of Geometry (0052)


Problem

Create two triangles $△ABC$ and $△DBC$ on the same side of the same base $BC$.

Suppose that

$$AB+AC=DB+DC, \quad AB=AC \quad and \quad DB>DC.$$

If the intersection of $DB$ and $AC$ is $E$, then

$$AE>DE.$$


$$ $$

$$ $$

$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$


Solution

If we take $DF$ equal to $AC$ on $DB$, then from $AB+AC=DB+DC$ and $DF=AC$,

$$AB=BF+DC,$$

$$∴ \ AB-BF=DC. \qquad [1]$$

Regarding $△ABF$, from the problem $0042$,

$$AB-BF<AF. \qquad [2]$$

From $[1]$ and $[2]$,

$$AF>DC. \qquad [3]$$

Regarding $△ADF$ and $△DAC$, they are on the same side of the base $AD$, $DF=AC$, and $[3]$.

Thus, from the problem $0041$,

$$∠ADF>∠DAC,$$

$$∴ \ ∠ADE>∠DAE. \qquad [4]$$

Therefore, from the problem $0039$,

$$AE>DE.$$

$ $

$ $
$ $

Reference

Teiichiro Sasabe (1976) The Encyclopedia of Geometry (2nd edition), Seikyo-Shinsha, p.14