The Encyclopedia of Geometry (0056)


Problem

In $△ABC$, if the bisector of $∠A$ is $AN$ and the perpendicular line from $A$ to $BC$ is $AH$, then

$$∠HAN=\frac{1}{2} |∠B-∠C|$$


$$ $$

$$ $$

$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$


Solution

When $AB>AC$, take the point $D$ on $AB$ such that $AD=AC$, and let the intersection of $CD$ and $AH$ and that of $CD$ and $AN$ be $E$ and $Q$, respectively.

Since $△ACD$ is an isosceles triangle, the bisector $AQ$ of $∠A$ is perpendicular to $CD$.

Now, regarding $△AEQ$ and $△CEH$,

$$∠AEQ=∠CEH \qquad and \qquad ∠AQE=∠CHE \ (=∠R).$$

$$∴ \ △AEQ \sim △CEH,$$

$$∴ \ ∠EAQ=∠ECH,$$

$$∴ \ ∠HAN=∠BCD.$$

However, from the previous question 0055, when $AB>AC$,

$$∠BCD=\frac{1}{2} (∠C-∠B),$$

$$∴ \ ∠HAN=\frac{1}{2} (∠C-∠B).$$

Similarly, when $AB<AC$,

$$∠HAN=\frac{1}{2} (∠B-∠C).$$

Also, if $AB=AC$,

$∠B=∠C$ and $AH$ and $AN$ overlap.

Thus,

$$∠HAN=\frac{1}{2} (∠B-∠C)=0.$$

Therefore, in any case,

$$∠HAN=\frac{1}{2} |∠B-∠C|.$$

$ $
$ $
$ $

Reference

Teiichiro Sasabe (1976) The Encyclopedia of Geometry (2nd edition), Seikyo-Shinsha, p.15