The Encyclopedia of Geometry (0067)


Problem

If we drop a perpendicular line $AB$ to the straight line $XY$ from a point $A$ that is not on $XY$, and draw hypotenuses $AC$, $AD$ and $AE$ on the same side as $AB$ so that $∠BAC$, $∠CAD$ and $∠DAE$ are equal, we have

$$CB<DC<ED.$$


$$ $$

$$ $$

$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$


Solution

Since $AB$ is a perpendicular line, and $AC$, $AD$ and $AE$ are hypotenuses,

$$∠R>∠ACB>∠ADC,$$

$$∴ \ ∠R<∠ACD<∠ADE.$$

Therefore, if we draw $CB’$ and $DC’$ so that $CB=CB’$ and $DC=DC’$, $CB’$ and $DC’$ fall within $∠ACD$ and $∠ADE$, and

$$△ACB≡△ACB’ \qquad and \qquad △ACD≡△AC’ D.$$

$$∠CB’ D \ (=∠R)>∠ADC,$$

$$∴ \ CB'<DC,$$

$$∴ \ CB<DC. \qquad [1]$$

$$∠DC’ E=∠ACB,$$

$$∠ACB>∠DEC’,$$

$$∴ \ ∠DC’ E>∠DEC’,$$

$$∴ \ DC'<ED,$$

$$∴ \ DC<ED. \qquad [2]$$

From $[1]$ and $[2]$,

$$CB<DC<ED.$$  

$ $
$ $
$ $

Reference

Teiichiro Sasabe (1976) The Encyclopedia of Geometry (2nd edition), Seikyo-Shinsha, p.17