The Encyclopedia of Geometry (0070)


Problem

In an acute triangle $ABC$, take points $P$ and $Q$ on the perpendicular lines drawn from the vertices $B$ and $C$ to the opposite sides, or on their extensions, so that $BP=CA$ and $CQ=BA$, respectively. Also, if we take points $P’$ and $Q’$ on $BC$ so that $PP’⊥BC$ and $QQ’⊥BC$, then

$$PP’+QQ’=BC$$


$$ $$

$$ $$

$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$


Solution 

Regarding $⊿ABD$ and $⊿CQQ’$,

$$AB=CQ \qquad and \qquad ∠ADB=∠CQ’ Q \ (=∠R).$$

Furthermore, since $∠BAD$ and $∠QCQ’$ are both complementary angles of $∠B$,

$$∠BAD=∠QCQ’,$$

$$∴ \ ⊿ABD≡⊿CQQ’,$$

$$∴ \ QQ’=BD.$$

Regarding $⊿PFE$ and $⊿CFP’$,

$$∠PFE=∠CFP’ \qquad and \qquad ∠PEF=∠CP’ F \ (=∠R).$$

$$∴ \ ⊿PFE〜⊿CFP’,$$

$$∴ \ ∠EPF=∠P’ CF.$$

Regarding $⊿CAD$ and $⊿PBP’$,

$$BP=CA, \quad ∠CDA=∠PBP’ \quad and \quad ∠DCA=∠P’ PB,$$

$$∴ \ PP’=CD,$$

$$∴ \ CD+BD=BC,$$

$$∴ \ PP’+QQ’=BC.$$

 

$ $
$ $
$ $

Reference

Teiichiro Sasabe (1976) The Encyclopedia of Geometry (2nd edition), Seikyo-Shinsha, pp.17-18