The Encyclopedia of Geometry (0122)


Problem
If you drop a perpendicular line $AD$ from the right-angled vertex $A$ of a rectangular triangle $ABC$ to the side $BC$,
$$∠C=∠BAD \qquad and \qquad ∠B=∠CAD.$$

$$ $$
$$ $$

$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$

$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$

Solution

$△ABC$ and $△DBA$ share $∠B \ (=∠DBA)$, and

$$∠A=∠ADB=∠R.$$

$$∴ △ABC \sim △DBA,$$

$$∴ \ ∠C=∠BAD.$$

$△ABC$ and $△DAC$ share $∠C \ (=∠ACD)$, and

$$∠A=∠CDA=∠R.$$

$$∴ \ △ABC \sim △DAC,$$

$$∴ \ ∠B=∠CAD.$$

$ $
$ $
$ $

Reference Teiichiro Sasabe (1976) The Encyclopedia of Geometry (2nd edition), Seikyo-Shinsha, p.28.