The Encyclopedia of Geometry (0134)


Problem

Take a point $D$ inside the isosceles right triangle $ABC$ with $∠C=∠R$, so that $AD=AC$ and $∠CAD=30°$. Then

$$BD=CD.$$


$$ $$
$$ $$

$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$

$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$

Solution

If the point symmetrical to $A$ with respect to $DC$ is $A’$, then

$$∠BCA’=∠ACA’-∠ACB=150°-90°=60°,$$

$$AC=A’ C \qquad and \qquad AC=BC,$$

$$∴ \ A’ C=BC.$$

Therefore, since $△A’ BC$ is an equilateral triangle,

$$A’ B=A’ C \qquad and \qquad ∠BA’ D=∠CA’ D=30°,$$

$$∴ \ △A’ BD≡△A’ CD,$$

$$∴ \ BD=CD.$$

$ $

$ $
$ $

Reference Teiichiro Sasabe (1976) The Encyclopedia of Geometry (2nd edition), Seikyo-Shinsha, p.31.