The Encyclopedia of Geometry (0138)


Problem

In a triangle $ABC$, if $AB=AC$, then

$$∠B=∠C.$$

And vice versa.


$$ $$
$$ $$

$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$

$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$

Solution

If we turn $△ABC$ over and make it $△AC’ B’$,

$$AB=AC’ \qquad and \qquad AC=AB’, \qquad (∵ \ AB=AC)$$

$$and \qquad BC=C’ B’,$$

$$∴ \ △ABC≡△AC’ B’,$$

$$∴ \ ∠B=∠C’ \qquad and \qquad ∠C=∠B’.$$

However, since $∠B=∠B’$ and $∠C=∠C’$,

$$∠B=∠C.$$

Also, conversely, if $∠B=∠C$,

$$BC=C’ B’, \qquad ∠B=∠C’ \qquad and \qquad ∠C=∠B’,$$

$$∴ \ △ABC≡△AC’ B’,$$

$$∴ \ AB=AC’ \qquad and \qquad AC=AB’.$$

However, since $AB=AB’$ and $AC=AC’$,

$$AB=AC.$$

$ $

$ $
$ $

Reference Teiichiro Sasabe (1976) The Encyclopedia of Geometry (2nd edition), Seikyo-Shinsha, p.32.