The Encyclopedia of Geometry (0141)


Problem

The straight line connecting the intersection of perpendicular lines drawn from both ends of the base of an isosceles triangle to the vertex bisects the apex angle.


$$ $$
$$ $$

$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$

$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$

Solution
If the intersection point of $BE$ and $CD$ is $O$, then $△ACD$ and $△ABE$ share $∠A$,
$$AC=AB \qquad and \qquad ∠CDA=∠BEA \ (=∠R).$$
Therefore, from the problem $0031$,
$$△ACD≡△ABE,$$
$$∴ \ AD=AE.$$
$△AOD$ and $△AOE$ share the side $AO$,
$$AD=AE \qquad and \qquad ∠ODA=∠OEA \ (=∠R).$$
Therefore, from the problem $0032$,
$$△AOD≡△AOE,$$
$$∴ \ ∠DAO=∠EAO.$$
In other words, the line $AO$ ​​bisects $∠A$.

$ $

$ $
$ $

Reference Teiichiro Sasabe (1976) The Encyclopedia of Geometry (2nd edition), Seikyo-Shinsha, p.32.