Asuhayama Shrine is located 750 $m$ north of Ibara Station on the Ibara Line of the Ibara Railway.
Problem
As shown in the figure, the side $BC$ is one side of a regular pentagon, which has a diagonal $DF$.
When we know the lengths of sides $AB$ and $AC$ and the angle $∠A$, find the length of the diagonal $DF$ of the regular pentagon.
$$ $$
$$ $$
$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
Solution
Let $AB=a, \ AC=b, \ ∠A=θ$, and $G$ be the foot of the perpendicular line from point $B$ to $AC$. Then,
$$cosθ=\frac{AG}{a},$$
$$∴ \ AG=a×cosθ.$$
Moreover,
$$tanθ=\frac{BG}{AG}=\frac{BG}{a×cosθ},$$
$$∴ \ BG=a×cosθ×tanθ=a×sinθ. \qquad \left(∵ \ tanθ=\frac{sinθ}{cosθ}. \right)$$
Since $CG=AC-AG=b-a×cosθ$,
$$BG^2+CG^2=BC^2,$$
$$BC^2=a^2×sin^2θ+(b-a×cosθ )^2,$$
$$BC^2=a^2×(sin^2θ+cos ^2θ )-2ab×cosθ+b^2,$$
$$BC^2=a^2-2ab×cosθ+b^2,$$
$$∴ \ BC=\sqrt{a^2-2ab×cosθ+b^2}.$$
Next, let $H$ be the foot of the perpendicular line drawn from the vertex $E$ of the regular pentagon to the diagonal $DF$.
Since $∠D \ (=∠F) \ =36°$ in the above diagram,
$$DH=cos36°×DE,$$
$$∴ \ DF=2 \ cos36°×DE.$$
Now, find the value of $cos36°$.
Using the double angle formulae $sin2θ=2 \ sinθ×cosθ$ and $cos2θ=1-2 \ sin^2θ$,
$$sin72°=2 \ sin36°×cos36°=2×(2 \ sin18°×cos18°)(1-2 \ sin^2 18°)$$
$$=(4 \ sin18°×cos18°)(1-2 \ sin^2 18°).$$
Furthermore, since $sin(\frac{π}{2}-θ)=cosθ$,
$$sin72°=cos18°,$$
$$cos18°=(4 \ sin18°×cos18°)(1-2 \ sin^2 18°),$$
$$4 \ sin18°×cos18°-8 \ sin^3 18°×cos18°-cos18°=0,$$
$$∴ \ 8 \ sin^3 18°×cos18°-4 \ sin18°×cos18°+cos18°=0. \qquad (1)$$
By dividing both sides of equation $(1)$ by $cos18° \ (≠0)$ and setting $sin18°=x$,
$$8x^3-4x+1=0. \qquad (2)$$
The cubic equation $(2)$ can be solved as follows:
$$(2x-1)(4x^2+2x-1)=0.$$
First, since $sin18°≠\frac{1}{2} \ (=sin30°)$, $\langle 2x-1=0 \rangle$ is inappropriate.
Therefore,
$$4x^2+2x-1=0,$$
$$∴ \ x=\frac{-1±\sqrt{1+4}}{4}=\frac{-1±\sqrt{5}}{4}.$$
Clearly
$$sin18°>0.$$
$$∴ \ x \ (=sin18°) \ =\frac{\sqrt{5}-1}{4}.$$
Using the half-angle formula $sin^2θ=\frac{1-cos2θ}{2}$,
$$sin^2 18°= \left( \frac{\sqrt{5}-1}{4} \right)^2=\frac{6-2 \sqrt{5}}{16}=\frac{1-cos36°}{2},$$
$$1-cos36°=\frac{6-2 \sqrt{5}}{8},$$
$$∴ \ cos36°=\frac{1+\sqrt{5}}{4}.$$
Since $DE=BC$ and the value of $BC$ was calculated above,
$$DF=2 \ cos36°×DE=\frac{1+\sqrt{5}}{2}×BC,$$
$$∴ \ DF=\frac{1+\sqrt{5}}{2}× \sqrt{a^2-2ab×cosθ+b^2}.$$
$$ $$
$$ $$
$$ $$
Reference
Hidetoshi, Fukagawa and Tony Rothman (2008) Sacred Mathematics: Japanese Temple Geometry, p.133. Princeton University Press.
Yoshikazu Yamakawa, ed. (1997) Okayama ken no Sangaku (Sangaku in Okayama Prefecture), p.44; pp.331-332.