The Encyclopedia of Geometry (0157)


Problem

If there are three points $D, \ E$ and $F$ on each side of an equilateral triangle $ABC$ such that $AD=BE=CF$, then the triangle $DEF$ is also an equilateral triangle.


$$ $$
$$ $$

$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$

$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$

Solution
 

Since $△ABC$ is an equilateral triangle,

$$AB=BC=CA.$$

From the problem statement,

$$AD=BE=CF,$$

$$∴ \ BD=CE=AF.$$

Regarding $△ADF, \ △BED$, and $△CFE$,

$$AD=BE=CF, \qquad AF=BD=CE\qquad and \qquad ∠DAF=∠EBD=∠FCE \ (=60°),$$

$$∴ \ △ADF≡△BED≡△CFE,$$

$$∴ \ DF=DE=EF.$$

Therefore, a triangle $DEF$ is an equilateral triangle.

$ $

$ $
$ $

Reference Teiichiro Sasabe (1976) The Encyclopedia of Geometry (2nd edition), Seikyo-Shinsha, pp.35-36.