The Encyclopedia of Geometry (0159)


Problem

$O$ is a point in an equilateral triangle $ABC$.

If $∠BAO>∠CAO$, then

$$∠BCO>∠CBO.$$


$$ $$
$$ $$

$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$

$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$

Solution
 
$△ABO$ and $△ACO$ share the side $AO$,
$$AB=AC \qquad and \qquad ∠BAO>∠CAO,$$
$$∴ \ BO>CO,$$
$$∴ \ ∠BCO>∠CBO.$$
$ $
$ $
$ $

Reference Teiichiro Sasabe (1976) The Encyclopedia of Geometry (2nd edition), Seikyo-Shinsha, p.36.