Hachiman Wake Shrine (1890), Sako, Akaiwa City, Okayama Prefecture (06)


Problem

Find the diameter of a circle inscribed in three sides of a right triangle $ABC$ ($\angle B$ is a right angle).


$$ $$

$$ $$

$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$

$$ $$


Solution

Let the lengths of the three sides be $AB=c$, $BC=a$, and $CA=b$, respectively. From the figure, if the area of a right triangle is $S$, then

$$S=\frac{ac}{2} — [1],$$

If the diameter of the inscribed circle is $x$, then from Heron’s formula,

$$S=\frac{1}{2}×\frac{x}{2}×(a+b+c) — [2],$$

From [1] and [2],

$$\frac{ac}{2}=\frac{1}{2}×\frac{x(a+b+c)}{2},$$

$$x=\frac{2ac}{a+b+c}.$$

(Answer) $x=\frac{2ac}{a+b+c}.$


Reference

Yoshikazu Yamakawa, ed. (1997) Okayama ken no Sangaku (Sangaku in Okayama Prefecture), p.50; p.311.


Leave a Reply

Your email address will not be published. Required fields are marked *