The Encyclopedia of Geometry (0162)


Problem
If each side of a triangle $ABC$ is used as base and equilateral triangles $BCD, \ CAE$ and $ABF$ are constructed outside the triangle, then the lengths of line segments $AD, \ BE$ and $CF$ are equal.

$$ $$
$$ $$

$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$

$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$

Solution

For $△ACD$ and $△ECB$,

$$AC=EC \qquad and \qquad CD=CB. \qquad [1]$$

Furthermore,

$$∠ACD=∠ACB+∠BCD, \qquad ∠ECB=∠ECA+∠ACB$$

$$and \qquad ∠BCD=ECA \ (=60°),$$

$$∴ \ ∠ACD=∠ECB. \qquad [2]$$

From $[1]$ and $[2]$,

$$△ACD≡△ECB,$$

$$∴ \ AD=EB. \qquad [3]$$

For $△ABE$ and $△AFC$,

$$AB=AF \qquad and \qquad EA=CA. \qquad [4]$$

Furthermore,

$$∠BAE=∠BAC+∠CAE, \qquad ∠FAC=∠FAB+∠BAC$$

$$and \qquad ∠CAE=∠FAB \ (=60°),$$

$$∴ \ ∠BAE=∠FAC. \qquad [5]$$

From $[4]$ and $[5]$,

$$△ABE≡△AFC,$$

$$∴ \ BE=FC. \qquad [6]$$

From $[3]$ and $[6]$,

$$AD=BE=CF.$$

$ $
$ $
$ $

Reference Teiichiro Sasabe (1976) The Encyclopedia of Geometry (2nd edition), Seikyo-Shinsha, p.37.