The Encyclopedia of Geometry (0167)


Problem

Let $D$ and $E$ be points on sides $BC$ and $CA$ respectively of a triangle $ABC$, such that $$BD=\frac{1}{2} DC \qquad and \qquad CE=EA.$$

Then $AD$ bisects $BE$.


$$ $$
$$ $$

$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$

$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$

Solution

Let $F$ be the midpoint of $DC$, and $O$ be the intersection of $AD$ and $BE$.

Then, $△ACD$ and $△ECF$ share $∠C$,

$$AC∶EC=2∶1 \qquad and \qquad CD∶CF=2∶1,$$

$$∴ \ △ACD≡△ECF,$$

$$∴ \ AD∥EF.$$

$△BEF$ and $△BOD$ share $∠EBF \ (=∠OBD)$,

$$BF∶BD=2∶1 \qquad and \qquad OD∥EF,$$

$$∴ \ △BEF≡△BOD,$$

$$∴ \ BE∶BO=2∶1,$$

$$∴ BO∶OE=1∶1.$$

In other words, $AD$ bisects $BE$.

$ $

$ $
$ $

Reference Teiichiro Sasabe (1976) The Encyclopedia of Geometry (2nd edition), Seikyo-Shinsha, p.38.